Recursive Noise Estimation Using Iterative Stochastic Approximation for Stereo-based Robust Speech Recognition
نویسندگان
چکیده
We present an algorithm for recursive estimation of parameters in a mildly nonlinear model involving incomplete data. In particular, we focus on the time-varying deterministic parameters of additive noise in the nonlinear model. For the nonstationary noise that we encounter in robust speech recognition, different observation data segments correspond to different noise parameter values. Hence, recursive estimation algorithms are more desirable than batch algorithms, since they can be designed to adaptively track the changing noise parameters. One such design based on the iterative stochastic approximation algorithm in the recursive-EM framework is described in this paper. This new algorithm jointly adapts time-varying noise parameters and the auxiliary parameters introduced to linearly approximate the nonlinear model. We present stereo-based robust speech recognition results for the AURORA task, which demonstrate the effectiveness of the new algorithm compared with a more traditional, MMSE noise estimation technique under otherwise identical experimental conditions.
منابع مشابه
Recursive estimation of nonstationary noise using iterative stochastic approximation for robust speech recognition
We describe a novel algorithm for recursive estimation of nonstationary acoustic noise which corrupts clean speech, and a successful application of the algorithm in the speech feature enhancement framework of noise-normalized SPLICE for robust speech recognition. The noise estimation algorithm makes use of a nonlinear model of the acoustic environment in the cepstral domain. Central to the algo...
متن کاملStochastic vector mapping-based feature enhancement using prior model and environment adaptation for noisy speech recognition
This paper presents an approach to feature enhancement for noisy speech recognition. Three prior models are introduced to characterize clean speech, noise and noisy speech respectively using sequential noise estimation based on noise-normalized stochastic vector mapping. Environment adaptation is also adopted to reduce the mismatch between training data and test data. For AURORA2 database, the ...
متن کاملAdaptive stereo-based stochastic mapping
Stereo-based stochastic mapping (SSM) is a technique based on constructing a Gaussian mixture model for the joint distribution of stereo data. This paper considers the use of SSM for noise robust speech recognition, in which clean and noisy speech features form the stereo data. The Gaussian mixture model, whose parameters are estimated from the observed stereo features during training time, is ...
متن کاملA comparative study of noise estimation algorithms for VTS-based robust speech recognition
We conduct a comparative study to investigate two noise estimation approaches for robust speech recognition using vector Taylor series (VTS) developed in the past few years. The first approach, iterative root finding (IRF), directly differentiates the EM auxiliary function and approximates the root of the derivative function through recursive refinements. The second approach, twofold expectatio...
متن کاملN-best based stochastic mapping on stereo HMM for noise robust speech recognition
In this paper we present an extension of our previously proposed feature space stereo-based stochastic mapping (SSM). As distinct from an auxiliary stereo Gaussian mixture model in the front-end in our previous work, a stereo HMM model in the back-end is used. The basic idea, as in feature space SSM, is to form a joint space of the clean and noisy features, but to train a Gaussian mixture HMM i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001